
An Evaluation of Open Source Static Code Analysis
Reporting in Context of Continuous Integration Tools

Sebastian Funke, Brian Pfretzschner, Hamza Zulfiqar
Center for Advanced Security Research Darmstadt

Department of Computer Science
Technische Universität Darmstadt, Germany

Abstract—Static code analysis should run frequently in a
continuous integration lifecycle. Each run produces a lot of
information that need to be reviewed, evaluated and integrated
in the ongoing development process. Therefore, the analysis
results should be reported in a clear and meaningful fashion.
Additionally, results might be combined, reworked, concentrated
or filtered. We use only open source tools that are freely available
and examine how they work together and what their results look
like.

I. INTRODUCTION

Building secure software systems gets more and more
important. Not just private hackers are attacking our soft-
ware, also foreign and even western governments put in
great effort in breaking into important systems [1]. To do
so, they need some kind of vulnerability to attack. Since
writing vulnerability-free software is hard, tools are welcome
to support and maintain software quality on an ongoing basis.
Static code analysers can fulfil this task.

Continuous integration is a software development philos-
ophy. The key idea is the entire software product is tested,
built and measured after each commit. “In essence, Contin-
uous Integration is about reducing risk by providing faster
feedback. First and foremost, it is designed to help identify
and fix integration and regression issues faster, resulting in
smoother, quicker delivery, and fewer bugs.” [2] Furthermore,
one can think of additional tasks that can monitor software
quality regularly. By doing so, it is possible to notice common
problems or a degradation of code quality as soon as possible.
This is a huge opportunity to reduce risk on a permanent basis.

Therefore, we have to improve the software development
process in terms of early and continuous security analysis of
the source code. Such static analysis tools can be applied
independently during the development process at different
stages. One option would be the integration of analysers
into the Integrated Development Environment (IDE) of the
developer. Another possibility is the combination of those tools
in a continuous integration system, to collect issues during or
after the build process. Besides CI and IDE the development
tool chain can be extended with Code Quality Management
systems, as platform for analyse the code and manage the
analysed issues.

In our paper, we compare and evaluate the issue reporting
capabilities in two CI tools (Jenkins and Teamcity), in a Code
Quality Management tool (SonarQube) and in the IDE Eclipse.
We integrated the popular analysers FindBugs and PMD in

each development tool above and executed them on a Java test
project (JEdit1) with a variety of issues.

We motivated and introduced the idea of our work in the
introduction I. Next we explain the foundations of static code
analysis in section II and II-B, with the classification of lexical-
and data flow analysis in section II-B1 and II-B2 respectively,
and two popular analysers FindBugs and PMD which we used
in our evaluation.

Then we differentiate between the possibilities where to
apply static code analysis, in IDE’s, CI systems and CQM
systems in the sections III, IV and V and explain the levels
of integration in CI for Jenkins in subsection IV-A. Thereby,
we introduce the open source tools we evaluated: Eclipse (III),
Jenkins (IV-B), Teamcity (IV-C) and SonarQube (V-A).

In our evaluation in section VI we decide for an evaluation
strategy (VI-A), identify important evaluation questions for
our evaluation walk-through (VI-A1, VI-A2, VI-A3, VI-A4),
explain our evaluation results for every tested tool in the
subsections VI-B, VI-C, VI-D and VI-E and create a matrix
to compare the evaluated tools in subsection VI-F.

Finally we conclude our work in section VII.

II. STATIC CODE ANALYSIS

A. Overview

Static code or program analysis is an automated analysis
performed on the static source code of a program without
executing it [3]. The aims are to enhance robustness and to
find errors and all kind of programming mistakes early during
the coding and testing phases, to reduce the effort of bug-fixing
after the release of the software.

Analysers that execute the program and analyse the dy-
namic behaviour on the binaries are called dynamic code anal-
ysers. Those analysers might be easier to implement, because
they analyse the already loaded binaries and won’t have to
deal with complicated programming language features, like
reflection and anonymous classes, but on the other hand, they
are limited in their reporting capabilities. Modern approaches
try to combine both or try to break down the source code in
a simpler immediate representation. The analysis framework
Soot2 for example transforms complicated Java code into a
three-operator code, called Jimple and allows to implement

1JEdit: An open source text editor written in Java
2Soot: A framework for analysing and transforming Java and Android

Applications

http://www.jedit.org/
https://sable.github.io/soot/
https://sable.github.io/soot/

Fig. 1. Basic model of static code analysis [4]

analysers on an easier representation. However, dynamic or
hybrid code analysers are out of scope for this work and not
further mentioned.

Especially for low-level programming languages like C,
static code analysis became a crucial part of software de-
velopment to find memory leaks and other coding mistakes.
Hence, it is used automatically in compilers to find rough pro-
gramming mistakes and most common security flaws. Anyway,
detailed or special purpose security analysers can’t be part of
a compiler, they need to be applied externally with custom
rules to decrease the number of false positives and to increase
development performance.

Typical types of analysis do:

• Type checking

• Style/Code quality checking

• Program/Property verification

• Pointer, buffer, file and memory checking

• Control flow management

• Initialization and shutdown checks

Increasing the precision (less false positive) and perfor-
mance, as well as decreasing the recall (less false negatives)
of analysers is the prevailing goal of the research in this area
and characterizes the quality of a static code analyser.

B. Foundations and Classification

There are different types of analysers which all have a
different scope. Most of them are specialized to a specific
programming language, but some are also capable of analysing
multiple languages. An example for a multi-language analyser
is CPD3 which is supposed to find duplicate code. It works
with Java, JSP, C, C++, Fortran and PHP code.

On a very high level, all analysers share a common way
of performing a static analysis, as shown in figure 1. They
parse, tokenize and lex the source code and build a context
free grammar, just like a compiler does. Out of that, they
build an abstract model, for example an Abstract Syntax Tree
(AST). Finally, they use external rules and security knowledge
to perform the analysis on the built model and display the
results in a human readable way.

3CPD: Copy/Paste Detector

It is possible to differentiate two kinds of analysis, lexical-
and data flow analysis.

1) Lexical Analysis: The most analysers do a form of
lexical analysis. They build a model like an AST with symbol
tables, analyse nodes against specific rules and use pattern
matching to find anomalies and bugs. An early and simple
example from 2001 for such an analyser is the Rough Auditing
Tool for Security (RATS) [4], now acquired by the successful
commercial tool Fortify4, that finds security and memory flaws
in C source code, by doing a lexical analysis with XML-
style rules, that contain already detailed descriptions of the
corresponding problem.

2) Dataflow Analysis: A data flow analysis uses additional
models, like a Data Flow- and Control Flow Graph (CFG), to
find potential vulnerabilities and anomalies, by tracking data
from inputs/sources to a leak/sink. Typical analysis of that
type are called Taint- or Live Variable Analysis. The easiest
approach of such an analyser operates only in a single function
body (intra-procedural). Depending on the desired goal, such
analysis can be flow-sensitive (forward or top-down approach),
to get control flow information about the past with more
precision, or can be flow-insensitive (backward or bottom-up
approach), to get information about the future, but with less
precision.

To extend the analysis scope to other functions, classes and
packages (inter-procedural), and automatically cover the dif-
ferent caller and callee contexts (context-sensitivity) of a whole
program with variable aliases and other language features,
additional models, like Call Graphs, Point-To-Sets and Inter-
procedural Control Flow Graph’s are necessary. Examples
for sophisticated inter-procedural analysers are Coverity5 and
FlowDroid6 from Eric Bodden at the TU Darmstadt. With
modern language features like reflection, virtual dispatch and
multi-threading, static code analysis become more and more
complex, hence the performance and/or precision decreases.

FindBugs and PMD implement a data flow analysis and
they are the open source static analysers we used later in our
work for the evaluation. Hence, they are described now.

a) PMD: Is a source code analyser for Java, JavaScript,
XML and XSL to find common programming flaws like
unused variables, empty catch blocks, unnecessary object
creation, etc. It uses a set of rules, specified in a Java or XPath
language, on an AST and a control flow graph with data flow
nodes to produce a report with rule violations in XML format.

b) FindBugs: Analyses Java class files for program-
ming defects and uses nearly 300 bug patterns with different
categories (bad practice, correctness, etc.) and severity classes
(high, medium and low) [5]. Unlike PMD, it is possible to write
custom detectors in Java as plugins to analyse java-bytecode or
source code. The detectors use techniques like visitor patterns
over class files, with state-machines to save types, stack-values,
constants and other information and by traversing the control
flow graph, to save conditional information. The FindBugs
detectors are usually not inter-procedural, but do an additional

4Fortify: Static code analyser by HP
5Coverity: Commercial inter-procedural static code analyser
6FlowDroid: Context-, flow-, field-, object-sensitive and lifecycle-aware

static taint analysis tool for Android applications

http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
http://www8.hp.com/de/de/software-solutions/application-security/
https://www.coverity.com
http://sseblog.ec-spride.de/tools/flowdroid
http://sseblog.ec-spride.de/tools/flowdroid

global analysis to get knowledge about variables scopes and
subtype-relationships.

Now it is important to distinguish when to apply analysers
in a Software Development Lifecycle. Most analysers, like
FindBugs and PMD, exist as stand-alone version and allow
the integration in common development tools, like IDE’s, CI
systems or Code Quality Management systems.

III. STATIC CODE ANALYSIS IN IDE

It is straightforward to integrate common analysers like
PMD and FindBugs in an Integrated Development Environ-
ment (IDE) like Eclipse7, Netbeans or IntelliJ.

With IDE (Integrated Development Environment), we mean
a program “that provides comprehensive facilities to computer
programmers for software development. An IDE normally
consists of a source code editor, build automation tools and a
debugger.”8 The IDE is usually the program that programmers
use to develop new code, review code or fix bugs and issues.
Since the programmer is used to navigate through the source
using the IDE, it would be very helpful to enrich this environ-
ment by additional information. In contrast, reviewing analysis
results in an independent and specialized program or website,
code formatting and navigation can differ dramatically. Also,
when it comes to fixing an issue, already being in the IDE
means, a programmer can just make its changes instead
of switching programs and locating the corresponding code
location.

Static code analysis on IDE level is a common choice for
many projects. Since the compiler does many static analysis, it
is effectively integrated into any IDE that can start the compile
process and interprets that compilers output.

Advantages of integrating additional static code analysers
in IDEs:

• Live feedback during programming

• Easy mapping of issues to code

• Possibility to fix issues early and instantly

• Reviewing and editing of source in one environment

• Interactive education for developers

• Extensibility thorough project specific rules

However disadvantages arise in bigger projects, especially
data flow analysers, tend to scale not very well. There is no
central way to configure the analyser rules, to improve the
results and performance. Many developers tend to suppress
warnings from such analyzers, since they produce a lot of
false positives. Hence, it is desired to have a central and
independent analyser, which can run on the remote repository
code regularly and with predefined settings.

In this paper, we used the popular open source IDE
Eclipse9. We decided for Eclipse because it is platform
independent and highly extensible. Furthermore, we could

7An official list of Source Code Analysis plugins for Eclipse can be found
in the Eclipse Marketplace.

8Integrated development environment
9https://eclipse.org/

integrate our test analysers PMD and FindBugs into Eclipse.
Therefore, the results are comparable with the other platforms
we evaluated.

IV. STATIC CODE ANALYSIS IN CI

Continuous Integration (CI) firstly proposed by Grady
Booch [6], is the software engineering practice of continuously
merging all developers working copies with a shared release
master branch several times a day.

Advantages and disadvantages of Continuous Integration
(CI) [7]:

+ Immediate Notification:
CI ensures that ongoing changes to the source code
do not break the intent or design of the software. If a
change does break the software, that break is identified
immediately and can be fixed with a minimal cost and
impact to the projects schedule.

+ Automated Testing and Deploying:
CI enables many automation possibilities. The most
useful automation area is testing in form of Unit- and
Integration-Testing, to find problems after component
integration and change introduced bugs in previously
working components. Finally, a correct configured
CI system can automate the deployment of software
releases.

+ Secure Development:
By integrating security testing and secure code anal-
ysis, CI can be further leveraged to include secure
development practices while minimizing the amount
of extra effort required to get the benefits of secure
development. Since it is tied to CI, security testing and
secure code review begins when a project begins and
runs continuously throughout project development.
With CI, vulnerability testing becomes part of the
regression test bed, executed automatically with each
successive build on the CI platform.

+ Changing Testing Economics:
Using CI for build, test, and analysis automation has
increased the depth and breadth of tests while also
making them faster and less expensive. By making it
cheap and easy to perform tests, teams are encouraged
to test more and test sooner in the development cycle,
reducing the cost of fixing bugs.

+ Trend and History:
CI enables a higher management layer to view the
history and trend of issues and builds.

- CI Configuration:
The configuration of a CI instance can be very
troublesome and involves the understanding of many
different tools. To create a working tool chain of
testing, analysing and building, with many thresholds
and parameters the developer team has to understand
every tool and have to tune parameters after gaining
more experience.

http://marketplace.eclipse.org/taxonomy/term/14,31
http://en.wikipedia.org/wiki/Integrated_development_environment
https://eclipse.org/

A. Levels of Integration

Depending on how continuous integration is accomplished
in a given process management, static code analysis can be
performed at different locations, times and with different
automation and reporting levels. According to [2, p. 6ff], there
are 7 phases of applying continuous integration to a specific
development. For this overview, only 3 phases apply: Phase
1 there is no common build server, Phase 2 there is a build
server but builds run on a fixed (nightly) schedule and Phase
7 builds and tests (including analysis, measures) are issued as
changes are committed.

1 No Build Server
When no common build server exists, code analysis
can only be applied on each developer’s local machine.
No developer is obliged to run the static code analysis
before committing his changes nor will anybody be
notified if code quality was decreased or new issues
were introduced.

2 Nightly Builds
The build server could also run static code analysis
and quality measures at each build and publish the
results. Even notifications are possible, although they
would not be accurately addressed since the system
does not know which commit introduced the issue and
can therefore not just notify the appropriate author.

3 Continuous Integration Environment
The server runs all tests, analyses and code measures
at each commit, publishes the results and notifies the
appropriate developer when the build failed or new
issues were introduced through his change.

B. Jenkins

Jenkins is a widely used tool to control and manage
continuous integration tasks. Its main purpose is to monitor
the execution of repeated jobs and present their outcomes10.

We decided for Jenkins because it is open source, highly
extensible and the most popular CI tool. To be exact, there are
more than 1000 freely available plugins that can be installed
by just one click using the Jenkins web interface. Beside
PMD and FindBugs, there are many more static analysers
available in the plugin repository. In our research we found,
almost every analyser has a Jenkins plugin available. Many
OpenSource analysers, like BrakeMan11, Cppcheck12 as well
as popular commercial tools like Coverity13 and Fortify14.
But not all plugins provide a full analyser. Especially plugins
for commercial tools like Coverity just provide a link to
a corresponding web platform for code quality and issue
management.

C. Teamcity

Like Jenkins, Teamcity is a web application for continuous
integration, published by the company Jetbrains15. In contrast

10From Jenkins Website, Meet Jenkins
11http://brakemanscanner.org/
12http://cppcheck.sourceforge.net/
13http://www.coverity.com/
14http://www8.hp.com/de/de/software-solutions/application-security/
15https://www.jetbrains.com/teamcity/

to Jenkins, its not open source, but freely available with a
limitation of 20 build configurations. Also it claims to be easier
to use and configure than Jenkins. It provides possibilities to
run analysers before or after the build process and to inspect
resulting reports. Furthermore, it works together with static
code analysers in the commercial IntelliJ16 IDE from Jetbrains.

V. STATIC CODE ANALYSIS IN CODE QUALITY
MANAGEMENT

Code Quality Management (CQM) is the practice of moni-
toring and controlling the quality of code with different metrics
and activities. Static code analysis is a method of gaining
measurements that can be used for CQM. Therefore, CQM
tools can benefit a lot by an integration of static code analysis
into a common build system.

Advantages and disadvantages of Code Quality Manage-
ment systems:

+ Advanced issue management capabilities

+ Easy integration of additional analysers

+ Advanced issue visualization

- Unintuitive source code provisioning

- Increased management overhead for developer

- Training for users necessary

Coverity and Fortify, as cloud services, provide beside
commercial, sophisticated static code analysis, advanced issue
management features and can be seen already as Code Quality
Management tools. Furthermore, CQM, IDE and CI systems
can work together, even though there are not many approaches
to accomplish this yet. Anyway, it is possible to start the
analysis in CQM systems continuously over a configuration
in a CI tool. SonarQube is an example for a typical, external
Code Quality Management system to run several analysers
with different rules on source code.

A. SonarQube

SonarQube17 is an open source project, implemented as
web application within its own web server, with the aim
to monitor, analyse and manage the quality of source code.
Besides analysis against common coding guidelines, like du-
plicate code, missing comments and potential bugs, it also
checks with an own rule engine (Squid) for several security
issues (e.g. from the OWSASP Top 10 list). Therefore it
provides a central place to manage intuitively analysis rules
from different analyser extensions. The main difference to
CI tools, is the feature to manage the found issues. Over
plugins it is possible to extend the analysis scope to over 20
programming languages. Finally it is even possible to start
a SonarQube Analysis over Jenkins with the corresponding
Jenkins plugin18 or with a plugin in the Eclipse IDE19.

16https://www.jetbrains.com/idea/
17http://www.sonarqube.org/
18http://docs.sonarqube.org/display/SONAR/Configuring+SonarQube+Jenkins+Plugin
19http://docs.sonarqube.org/display/SONAR/SonarQube+in+Eclipse

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://brakemanscanner.org/
http://cppcheck.sourceforge.net/
http://www.coverity.com/
http://www8.hp.com/de/de/software-solutions/application-security/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/idea/
http://www.sonarqube.org/
http://docs.sonarqube.org/display/SONAR/Configuring+SonarQube+Jenkins+Plugin
http://docs.sonarqube.org/display/SONAR/SonarQube+in+Eclipse

VI. EVALUATION

We decided to make a qualitative evaluation, with usability
inspection heuristics described in the book Information Visu-
alization by Kerren et al. [8]. From the work of Hollingsed
et al. on 15 years of usability inspection evaluation [9],
we derived the best method would be a combination of a
cognitive walk-through, combined with the usability heuristic
evaluation defined by Nielsen [10]. This wide-used, informal,
very cost efficient and effective method is proven to find with
a appropriate skilled evaluator team 55 - 90% of all usability
problems.

The usability inspection over heuristic evaluation method
uses a small group of usability experts, who evaluate a user
interface using a set of guidelines and noting the severity of
each usability problem and where it exists. We combine it
with a cognitive walk-though, in the way, that three experts
go through the tools with a cognitive expected path in context
of applying static code analysis with an additional usability
guidelines list for every stage.

A. Walk-through stages and evaluation questions

We identified four stages of our walk-through and evaluate
several usability guidelines in each stage:

1) Prepare analysis:

• Is the tool easy and intuitive to configure?
In this question, we appraise how complicated it was,
to set the continuous integration environment up and
create a test project with our test source.

• Is it possible to add external analysers?
This is a very useful feature, maybe even elementary.
Not being able to add external analysers means that
only the included analysers can be used.

• Is it possible to configure the analysers?
Configuring static code analysers is mandatory. For
example, there is a huge trade of between accuracy
and speed. Accurate analysis can result in very high
computational costs. Keep in mind that the analysis is
supposed to run for each commit. If an analyser run
takes hours, this would not be practical anymore.

• Is it possible to view the rules?
This question targets the transparency of the used
static analysers. It can be very helpful to be able to
view all supported rules if you want, for instance,
check if a specific feature is checked or not. Addition-
ally, viewing the rules can help to understand why an
issue was reported and how the code can be improved.

• Is it possible to choose, add, edit, delete rules?
This is related to the previous question, but goes a little
further. Imaging you got ascertain that at specific flaw
is not detected by a static code analyser. In case, the
analyser supports the editing of the used rule-set, you
can simply add a custom rule or edit an existing one.
Choosing (selecting) only a subset of all existing rules
can result in a faster analyser run which can come in
very handy if frequent analysis should be performed,
e.g. at each commit and thereby multiple times a day.

2) Run analysis:

• Is it easy and intuitive to start the analysis?
How much effort is required to manually start an
analysis? Is this even possible or are only automated
analyses supported? Furthermore, starting an analysis
can be easy as a click on a website or hard like
a manual invocation of a specific command on the
source code folder on some server.

• Is it possible to following the analysis progress?
This can be useful if an analysis takes some time and
the process cannot be determined in a different way.
Also, the analyser output can be helpful for debugging
purposes.

3) Evaluate analysis results:

• Is there an issue overview with severity levels?
An overview over the the amount of issues of different
severity classes is the best starting point for bigger
projects to investigate the impediments and code prob-
lems of the project.

• Is it possible to view an issue trend/history?
Especially for bigger projects it is important for the
management to get a visual history about the change
of code quality, the risks and amount of security
problems in the project, to take mitigation actions, like
coding guideline trainings, etc. soon enough, to keep
the code secure and robust.

• Is there a mapping from issue to source code position?
Perhaps one of the most important features of an
analyser is the mapping of an issue, to a concrete row
and column in the code. This helps the developer to
find and identify the problem and makes it much easier
to resolve the issue.

• Is there a description for every issue?
The description of the issue, optimally with examples,
is also very important, if the developer has no aware-
ness of the problem. It helps to understand the issue
and serves as educational helper, to avoid the same
issue in the future.

• Is the issue description easy to understand with solu-
tion suggestions?
Corresponding to the question before, a description
can also contain possible solutions to the issue, that
might be helpful to resolve the problem faster.

• Is there a possibility to filter issues? (severity, cate-
gory, tag, ...)
For projects with many issues it is important to filter
for the most important ones, to speed up code reviews,
to find the most common issue categories and to
prioritize issues.

4) Manage analysis results:

• Is it possible to assign issues to developers?
Analysis results serve as input for code reviews. Such
reviews need to get managed and scheduled and there-
fore an important feature is the possibility to assign
issues to developers.

Fig. 2. Jenkins Dashboard using the common “Static Code Analysis Plug-ins”
plugin that combines the results of multiple analysers.

• Is is possible to edit issues status? (Resolved, False
positive, ...)
Since many analysers report false positives or dupli-
cate issues, it is important to mark issues as resolved
or false positive to prevent code review overheads.

B. Eclipse

Eclipse is an open source and extensible Integrated Devel-
opment Environment (IDE). It is easy to add plugins which can
make development environment more customizable. It does not
provide any built-in feature for static code analysis. However,
this can be achieved by installing some available plugins.
Adding additional plugins to eclipse is sometimes not an easy
task. It could take a lot of time for configuring and exploring
the third party tools. There are available analysers that provide
best effort vulnerabilities detection and code analysis.

Once installation of any analyser is done, than it is easy
to run analysis on the code. Analysis process usually runs in
background and it cannot be seen. After the process finishes,
results can be seen on the console. Reporting capabilities are
not much more informative. Only very generic information
is available about the defects detected during the analysis
process. However, issues’ severity levels, their mapping to
source code and general description is made available by the
tools. There is no possibility to add or change the analysis
rules. Furthermore, it is not possible in this environment to
modify issues’ status, assignment to developer, filtering and
viewing issues’ histories.

C. Jenkins

Jenkins itself has no static code analysis included but a
major feature of Jenkins is its extensibility. Including a code
analysis step in a build process is simple as adding a build
step. The analysers configuration can be passed by command
line options or via a configuration file, depending on the used

analyser. How well an analyser can be configured or if the
rule-set can be modified depends not on Jenkins but only on
the analyser. We can, therefore, make no statement about this.

Starting an analysis in Jenkins is easy as pressing the
respective button in the web interface. The process can be
watched live in a self-reloading page that prints all console
output that is made by all build steps. Since static code analysis
is just a build step in Jenkins, the output of the analysers is
visible there too.

Visualization of analysis results is done by free plugins
only. In general, the analyser creates a result file that is written
to a specific location. After the build is done, the relevant
plugins check the project root for those result files and parse
their content. Therefore, the way the results are shown depends
largely on the quality of the used plugin. Nevertheless, one
common static code analysis plugin exists20, that is able to
collect the results of multiple plugins and create a common
overview over all results, see figure 2. Again, the quality of this
visualizations depends hardly on the quality of the available
plugins for a specific analyser. We observed a good support
and an ordinary visualization quality but these information is
only founded on samples.

D. Teamcity

The installation of Teamcity, consisting of a web server
and a database and was as easy as in Jenkins, but assisted
by an installation wizard, hence slightly easier. Since it is
also a highly customizable CI, it supports every programming
language and only the externally used static code analyser are
language dependent.

But the extensibility is the biggest difference to Jenkins.
Even popular analyser like FindBugs and PMD are not avail-
able as plugins and need to run externally as stand-alone
version. During the build process it is possible to start the
external analysers and or import the XML reports of those
analysers. Teamcity as a JetBrains product, has a binding to
the popular IntelliJ IDE from JetBrains. This IDE is out of
scope for our work, but contains own static code analysers
and the main difference of handling static code analysis in
Teamcity to Jenkins, is the fact, that Teamcity rely on the
analysis reports produced by IntelliJ. For our evaluation we
had to install and configure the analysers FindBugs and PMD
externally as stand-alone version and import the results during
the build process in Teamcity. Hence, it is not possible to
manage rules at a central instance and much effort to install,
configure and run different analysers with custom rule-sets.

Since there are no static code analysers integrated in
Teamcity, the issue presentation from the XML report is just
a non-user-friendly, parsed XML tree of issues with analyser
dependent information. In the case of FindBugs and PMD, with
a short description and reference to the line of code. There is
no filter, sort or search option for severity levels or categories
and also no issue management capabilities. The only positive
aspect of this view, is the issue position link, with an IntelliJ
hook, to directly jump to the line of code, where the issue is
located in the project, if the IntelliJ plugin is installed.

20Jenkins: Static Code Analysis Plug-ins

https://wiki.jenkins-ci.org/display/JENKINS/Static+Code+Analysis+Plug-ins

Fig. 3. A part of the SonarQube Dashboard that shows the most important
measurements and analysis results for all projects

Compared to Jenkins, Teamcity has a more modern user
interface, the build process is easier to configure, but lags
on plugins for static code analysis and is coupled to other
commercial products like the IntelliJ IDE.

E. SonarQube

The last evaluated tool was the CQM system SonarQube.
SonarQube consists out of 3 parts: a webserver, a database
to load and store analysis results and the SonarQube Runner,
which analyses the code specified in a project property file.
There was no easy installation wizard to install those parts,
hence it had a higher installation effort compared to the other
evaluated tools. Especially the task of starting the analysis,
was very unintuitive and accompanied by manual creation of
a property file in the file system for specifying project and
source code parameters. The starting of the analysis was much
easier in the other tools and it would be desired to create the
property file and start the analysis within SonarQube.

SonarQube is easy extensible and supports more than 20
programming languages over additional plugins, hence we had
no problems to evaluate its code analysis capabilities with
our Java test project JEdit. Beside the build-in analyser, it is
possible to add additional analysers like FindBugs and PMD.

The most impressive feature, is the intuitive and central rule
management in SonarQube, that allows to configure custom
rule sets, so called Quality Profiles, from a pool of rules from
different analysers, categories, severity classes and tags. It
provides an easy way to create custom analysis profiles for
special purposes, to focus on the most important issues and to
increase the performance. The rules have a clear structure, with
description, severity class, category etc. and it is even possible
to add additional information or solution suggestions to the rule
descriptions. Unlike the tested CI and IDE tools, SonarQube
even comes with security relevant default rules e.g. derived
from OWASPTop10 and CWE vulnerabilities, that can easily
be combined with rules from external analysers like FindBugs
and PMD.

The dashboard of SonarQube as starting point presents an
overview for one or all projects with different informative met-
rics, mostly for code quality, e.g. lines of code and duplicate
lines of code, but also gives a rating of the project depending
on the found issues and other metrics. As seen in figure 3,
it shows the number of issues of the different severity levels
(Blocker, Critical, Major, Minor, Info), the rule compliance and
a trend graph of the project for different metrics. Additionally
a table with the most violated rules and resources can be
displayed and the number of issues for different issue states.
One of the main differences of CQM systems to CI systems
or IDE’s, are the detailed capabilities of managing issues, e.g.
assigning issues to developers, assigning issues different states
like open, closed, false positive, confirmed, etc. In the menu
Issues and Issue-Drilldown it is possible to manage the issues,
to sort the issue list, search for issues matching to specific
rules and get more information to the issue and most important
where the issue is located in the code.

The only experienced drawback was in the issue manage-
ment. In the Rule-Management one can filter rules by tags and
categories (bugs, security bugs), but it is not possible to use
those filters in the issue management. This leads to a big list
of issues where e.g, unused code issues and security issues
can’t be distinguished anymore.

F. Comparison

After evaluating all above mentioned tools with different
configuration, we have come up with some results which can
be seen in figure 4. While preparing analysis environment;
Eclipse allows installation of additional plugins, but does not
support the customization of analysers. Teamcity also comes
up with same capabilities and restrictions like eclipse. On the
other hand, most promising features are addressed by Sonar-
Qube, which include from easy installation and configuration
to customization of analysers. Moreover, it is easy to run
analysis from Eclipse and Jenkins user interfaces, but other
tools are not so much user friendly in this regard.

When talk about reporting capabilities, Eclipse provides
issues’ description, their mapping to source code and severity
levels. Jenkins presents results with same characteristics like
eclipse but additionally allows issues’ history and filtering.
Teamcity has the worst demonstration that only includes
description of results. While, SonarQube has the best visual-
ization approach. It covers all features of Eclipse and Jenkins
as well as it offers suggestions for individual bugs. Last but
not the least, SonarQube is the only tool that can give the
opportunity to delegate issues and modify their status.

VII. CONCLUSION

In our comparison, SonarQube can score with a very nice
representation of analysis results, many included and pre-
configured analysers and a good extensibility. Unfortunately,
SonarQube lacks of some continuous integration features that
cannot be renounced but for this, Jenkins comes in very
handy. We suggest to use Jenkins for fundamental continuous
integration tasks, like watching a code repository or starting
the build because it is very good in those jobs. Then, it can also
start the SonarQube analysis and provide a link to the results to
the user. Jenkins would, in this scenario, be responsible for the

Jenkins Teamcity

Tool easy and intuitive to configure? a a

Possible to add external analyzers? a a

Possible to configure the analyzers? a r

Possible to view the rules? s r

Possible to choose, add, edit, delete rules? s r

Easy and intuitive to start the analysis? a r

Possible to following the analysis progress? a r

Issue overview with severity levels? a r

Issue trend/history? a r

Issue - source code mapping? a a

Issue description? a a

Issue description understandable? s r

Issue solution suggestion? s r

Issue filter options? a r

Delegate issues? r r

Edit issue status? r r r a

4
.

M
an

ag
e

re
su

lt
s

r a

r a

a a

r a

3
. E

va
lu

at
e

 a
n

al
ys

is

re
su

lt
s

a a

r a

r a

a a

r r2
. R

u
n

an
al

ys
i

s

a r

a a

1
. P

re
p

ar
e

an
al

ys
is

a a

r a

r a

r a

Eclipse SonarQubeQuestions

IDE CI CQM

Fig. 4. Comparison Matrix.

entire building work-flow whereby SonarQube is just used as
a platform to manage and present static code analysis (results).

Often, when static code analysis is used, multiple analysers
are combined. This leads to new tasks, like combining the
results and filtering duplicates. This can be provided by Jenkins
and SonarQube to some extend. How well it works depends
highly on the quality of the involved plugins but in general it
is a good idea to run multiple analysers. The tools we have
shown tackle the issues with multiple analysis results and are
more than helpful.

The tasks of removing duplicate findings should be im-
proved the most urgently since it is a real problem in practical
use. Despite, nearly all tools could convince us to use them
whenever appropriate.

REFERENCES

[1] I. Ruhmann, “Nsa, it-sicherheit und die folgen,” Datenschutz und
Datensicherheit - DuD, vol. 38, no. 1, pp. 40–46, 2014. [Online].
Available: http://dx.doi.org/10.1007/s11623-014-0010-3

[2] J. F. Smart, Jenkins: The Definitive Guide. O’Reilly Media, 2011.
[3] B. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward,

and D. Marsh, “Industrial perspective on static analysis,” Software
Engineering Journal, vol. 10, no. 2, pp. 69–75, Mar 1995.

[4] B. Chess and J. West, Secure Programming with Static Analysis, 1st ed.
Addison-Wesley Professional, 2007.

[5] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,”
in Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE
’07. New York, NY, USA: ACM, 2007, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1251535.1251536

[6] G. Booch, Object-oriented Analysis and Design with Applications (2Nd
Ed.). Redwood City, CA, USA: Benjamin-Cummings Publishing Co.,
Inc., 1994.

[7] T. Stiehm and G. Gotimer, “Building security in using
continuous integration,” CrossTalk, pp. 24–27, feb 2010. [Online].
Available: http://www.crosstalkonline.org/storage/issue-archives/2010/
201003/201003-Stiehm.pdf

[8] J. Fekete, A. Kerren, C. North, and J. T. Stasko, Eds., Information
Visualization - Human-Centered Issues in Visual Representation,
Interaction, and Evaluation, 28.05. - 01.06.2007, ser. Dagstuhl
Seminar Proceedings, vol. 07221. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2007. [Online]. Available: http://drops.dagstuhl.de/portals/07221/

[9] T. Hollingsed and D. G. Novick, “Usability inspection methods after
15 years of research and practice,” in Proceedings of the 25th Annual
ACM International Conference on Design of Communication, ser.
SIGDOC ’07. New York, NY, USA: ACM, 2007, pp. 249–255.
[Online]. Available: http://doi.acm.org/10.1145/1297144.1297200

[10] J. Nielsen, “Usability inspection methods,” in Conference Companion
on Human Factors in Computing Systems, ser. CHI ’95. New

http://dx.doi.org/10.1007/s11623-014-0010-3
http://doi.acm.org/10.1145/1251535.1251536
http://www.crosstalkonline.org/storage/issue-archives/2010/201003/201003-Stiehm.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201003/201003-Stiehm.pdf
http://drops.dagstuhl.de/portals/07221/
http://doi.acm.org/10.1145/1297144.1297200

York, NY, USA: ACM, 1995, pp. 377–378. [Online]. Available:
http://doi.acm.org/10.1145/223355.223730

http://doi.acm.org/10.1145/223355.223730

	Introduction
	Static code analysis
	Overview
	Foundations and Classification
	Lexical Analysis
	Dataflow Analysis

	Static code analysis in IDE
	Static code analysis in CI
	Levels of Integration
	Jenkins
	Teamcity

	Static code analysis in Code Quality Management
	SonarQube

	Evaluation
	Walk-through stages and evaluation questions
	Prepare analysis
	Run analysis
	Evaluate analysis results
	Manage analysis results

	Eclipse
	Jenkins
	Teamcity
	SonarQube
	Comparison

	Conclusion
	References

